Learning of Regular ω-Tree Languages

M. Jayasrirani1, M.H. Begam1, and D.G. Thomas2

1 Arignar Anna Government Arts College, Walajapet
2 Madras Christian College, Chennai - 600 059
dgthomasmcc@yahoo.com

Abstract. We introduce two subclasses of regular ω-tree languages called local ω-tree languages and Buchi local ω-tree languages. Automata characterization for these ω-tree languages is given. For these subclasses and ω-regular tree languages learning algorithms are given.

1 Introduction

The theory of tree automata and tree languages emerged in the middle of 1960s. Saoudi et al. [2] have considered infinite trees (ω-trees), recognizable ω-tree languages and regular ω-tree languages. Infinite trees are useful to decide second order theories. In this paper local ω-tree languages and Buchi local ω-tree languages are defined and automata characterization for ω-regular tree languages in terms of local ω-tree languages and Buchi local ω-tree languages is given. There is no learning algorithm so far in the literature for the local ω-tree languages, Buchi local ω-tree languages and regular ω-tree languages. We give learning algorithms for these classes of ω-tree languages. Our approach is similar to the one given in [3].

2 Definitions and Results

Definitions concerning trees, root of a tree, frontier of a tree, forks of a tree, infinite trees, automata on infinite trees and ultimately periodic infinite trees can be found in [1,2].

T_Σ stands for the set of all finite trees over Σ.

T_ω^Σ stands for the set of all infinite trees over Σ.

root(t) stands for root of a tree t.

fork(t) stands for fork of a tree t.

fork(Σ) stands for the set of all forks of Σ-trees.

Frfork(t) stands for the set of all forks of a tree t that end with frontiers of t.

Definition 1. A ω-tree language $L \subseteq T_\omega^\Sigma$ is called a local ω-tree language if there exists a pair $S = \{R, E\}$ (called a local system) where $R \subseteq \Sigma$ and $E \subseteq$ fork(Σ) such that

$L = \{t \in T_\omega^\Sigma : \text{root}(t) \in R, \text{fork}(t) \subseteq E\}$

The elements in fork(Σ) occur infinitely many times. In this case we write $L = L^\omega(R, E)$. The set of all local ω-tree languages is denoted by L^ω. $L = \{a(b^\omega, c^\omega), a(c^\omega, b^\omega)\}$ is a local ω-tree language.
Definition 2. A Buchi local system over \(\Sigma \) is an ordered triple \(S = \{ R, E, E' \} \) where \(R \subseteq \Sigma \), \(E \subseteq \text{fork}(\Sigma) \) and \(E' \subseteq E \). We denote \(L^\omega(R, E, E') \) a Buchi local \(\omega \)-tree language defined as

\[
L'(R, E, E') = \{ t \in T_\Sigma : \text{root}(t) \in R, \text{fork}(t) \subseteq E, \text{inf\,fork}(t) \cap E' \neq \phi \}
\]

where \(\text{inf\,fork}(t) \) is the set of elements in \(\text{fork}(t) \) which occur infinitely many times in \(t \). An \(\omega \)-tree language \(L \subseteq T_\omega^\Sigma \) is called a Buchi local \(\omega \)-tree language if there exists a Buchi local system such that \(L = L^\omega(R, E, E') \). The set of all Buchi local \(\omega \)-tree languages is denoted by \(L_B^\omega \). \(L = \{ a(b^\omega, c^\omega), a(c^\omega, b^\omega) \} \) is a Buchi local \(\omega \)-tree language.

Theorem 1. Every regular \(\omega \)-tree language (recognizable \(\omega \)-tree language) is an alphabetic homomorphic image of a Buchi local (local) \(\omega \)-tree language.

We can give construction procedures for deterministic Buchi \(k \)-ary \(\omega \)-tree automaton \(M \) such that \(L = L^\omega(M) \) where \(L \) is a local (Buchi local) \(\omega \)-tree language.

3 Learning Buchi Local \(\omega \)-Tree Languages

Definition 3. Let \(L \in L_B^\omega \) be such that \(L = L^\omega(S) \) for some Buchi local system \(S = \{ R, E, E' \} \) over an alphabet \(\Sigma \). \(S \) is said to be minimal for \(L \), if for any other Buchi local system \(S_1 = \{ R_1, E_1, E'_1 \} \) over \(\Sigma \), with \(L = L^\omega(S_1) \), we have \(R \subseteq R_1, E \subseteq E_1 \) and \(E' \subseteq E'_1 \).

Definition 4. Let \(K \) be a finite sample of ultimately periodic infinite trees. Let \(R_K = \text{root}(K) = \{ \text{root}(t) : t \in K \} \), \(E_K = \text{fork}(K) = \cup_{t \in K} \text{fork}(t) \)

\[
E'_K = \cup_{a(b^\omega, c^\omega)} F_r \text{fork}(t)
\]

\(S_K = \{ R_K, E_K, E'_K \} \) is called a Buchi local system associated with \(K \) and \(L = L^\omega(S_K) \) is called Buchi local \(\omega \)-tree language associated with \(K \).

Theorem 2. If \(K, K' \) are finite samples of ultimately periodic \(\omega \)-trees of \(T_\omega^\Sigma \) then

1. \(K \subseteq L^\omega(S_K) \)
2. \(K \subseteq K' \) implies \(L^\omega(S_K) \subseteq L^\omega(S_K') \)
3. \(L \in L_B^\omega \) with \(K \subseteq L \) implies \(L^\omega(S_K) \subseteq L \)

Definition 5. Let \(L \) be a local (Buchi local) \(\omega \)-tree language. A finite subset \(F \) of \(T_\omega^\Sigma \) is called a characteristic sample for \(L \) if \(L \) is the smallest local (Buchi local) \(\omega \)-tree language containing \(F \).

Theorem 3. If \(F \) is the characteristic sample for a local (Buchi local) \(\omega \)-tree language and \(F \subseteq K \subseteq L \) then \(L = L^\omega(S_K) \).

Theorem 4. There effectively exists a characteristic sample for any local (Buchi local) \(\omega \)-tree language.

Theorem 5. Given an unknown local (Buchi local) \(\omega \)-tree language we give an algorithm that learns in the limit from positive data, a local system (Buchi local system) \(S_F \) such that \(L^\omega(S_F) = L \).