Linear Determination of the $\dot{V}O_2$ Half Time Response During Exercise*

E. L. Fox, D. T. Kirkendall1, and R. L. Bartels

Laboratory of Work Physiology, School of Health, Physical Education, and Recreation, Columbus, OH 43210, USA

Summary. The oxygen consumption ($\dot{V}O_2$) half time response was determined on eight female subjects during exercise using a nonlinear equation of the form $\dot{V}O_2t = \dot{V}O_2ss (1 - e^{-kt})$, where $\dot{V}O_2t = \dot{V}O_2$ at time t of exercise, $\dot{V}O_2ss = \dot{V}O_2$ at steady state, e = natural log, and k = constant of the curve, and a simple, linear equation of the form $t = b(\dot{V}O_2t/\dot{V}O_2ss) + a$. The slope (b) and intercept (a) of the line, respectively, were determined for each work load and each subject using the $\dot{V}O_2$ measurements within the initial linear portion of the individual $\dot{V}O_2$ uptake curves. Two treadmill walks were used ($X = 38$ and $65\% \dot{V}O_2 max$). For the lower work load, the $X \pm SD$ for the nonlinear and linear half time responses were 21.6 ± 4.8 s and 21.6 ± 4.9 S, respectively, and for the higher load 32.8 ± 5.6 s and 32.6 ± 3.6 s, respectively. No significant differences between linear and nonlinear means were found. The linear correlation between determinations was 0.88 ($p < 0.001$). The standard error of estimate was ± 3.4 s with 95% confidence limits of ± 7.2 s ($\pm 25.7\%$ of the nonlinear half time mean). The $\dot{V}O_2$ half time response for the higher work load was significantly greater ($p < 0.01$) than for the lower load. Linear correlations of 0.84 and 0.76 ($p < 0.01$) between % $\dot{V}O_2$ max and linear and nonlinear determinations of the half time responses, respectively, were also found. We conclude that (1) the $\dot{V}O_2$ half time response at the onset of steady state exercise can be accurately determined on a group basis but not an individual basis from simple linear equations, and (2) the $\dot{V}O_2$ half time response is slower with increasing work loads.

Key words: $\dot{V}O_2$ half time response — O_2 kinetics — $\dot{V}O_2$ kinetics — Exercise — Females

* Supported by a grant from the Central Ohio Heart Chapter
1 Present address: Department of Physical Education, University of Wisconsin at LaCrosse, LaCrosse, WI 54601, USA

Offprint requests to: Edward L. Fox, The Ohio State University, Laboratory of Work Physiology, 337 W. 17th Avenue, Columbus, OH 43210, USA

0301-5548/80/0044/0077/$ 01.00
The speed of the increase in oxygen consumption (\(\dot{V}O_2\)) at the onset of exercise is commonly determined by the \(\dot{V}O_2\) half time response, i.e., the length of time required to increase the \(\dot{V}O_2\) to one-half of the steady-state \(\dot{V}O_2\) value (Bason et al. 1973; Cerretelli et al. 1966; Hagberg et al. 1978; Henry 1951; Hickson et al. 1978; Weltman and Katch 1976; Whipp and Wasserman 1972). Since the time course of the \(\dot{V}O_2\) response at the onset of exercise is exponential (Henry 1951; Henry and DeMoor 1956; Margaria et al. 1965), the \(\dot{V}O_2\) half time has until now been determined using complex nonlinear equations. However, most of the \(\dot{V}O_2\) half time values for various exercise loads have been shown on the average to be between 10 and 40 s (Bason et al. 1973; Cerretelli et al. 1966; Hagberg et al. 1978; Henry 1951; Hickson et al. 1978; Weltman and Katch 1976; Whipp and Wasserman 1972), times which are well within the linear portion of the exponential \(\dot{V}O_2\) uptake curve. This prompted us to investigate the possibility of determining the \(\dot{V}O_2\) half time response using a simple linear equation. The results of this investigation are the subject of this report.

Material and Methods

Eight female students at The Ohio State University were used as subjects. Each was given a thorough medical examination and each signed an informed consent prior to the initiation of the study. The subjects were moderately active but none was engaged in a systematic exercise training program prior to the study. Their maximal aerobic power (\(\dot{V}O_2\) max) as determined on an inclined treadmill, average 41.7 ml \(\cdot\) kg\(^{-1}\) \(\cdot\) min\(^{-1}\) and ranged between 34.6 and 46.9 ml \(\cdot\) kg\(^{-1}\) \(\cdot\) min\(^{-1}\).

Two submaximal treadmill walks of 6 min duration were used: (a) 4.8 km \(\cdot\) h\(^{-1}\) up a 2% grade, and (b) 4.8 km \(\cdot\) h\(^{-1}\) up a 10% grade. The 2% load averaged 38% \(\dot{V}O_2\) max (range 32–46%) whereas the 10% load averaged 65% \(\dot{V}O_2\) max (range 55–77%). Six subjects performed the 2% load and eight subjects the 10% load.

Oxygen consumption (\(\dot{V}O_2\)) was measured every 20 s during the first 3 min of exercise and every 1 min thereafter. An open-circuit system was used in which expired air was collected into metrological balloons and immediately analyzed on electronic analyzers for \(O_2\) and \(CO_2\) concentrations. The analyzers were previously calibrated with gases analyzed by the Haldane technique. Inspired ventilation was measured with a Cowan CD-4 gas meter especially equipped with a digital display and printer, programmed to readout and print every 20 s. The gas meter was previously calibrated against a Tissot spirometer.

The nonlinear determination of the \(\dot{V}O_2\) half time response was calculated as described by Hagberg et al. (1978) using the equation first proposed by Henry (1951):

\[
\dot{V}O_2,t = \dot{V}O_2,ss \left(1 - e^{-kt}\right)
\]

where:

- \(\dot{V}O_2,t\) = exercise oxygen consumption at time \(t\),
- \(\dot{V}O_2,ss\) = steady state oxygen consumption for the exercise,
- \(e\) = natural logarithm of numbers,
- \(t\) = time in s,
- \(k\) = constant of the curve.

The \(\dot{V}O_2,ss\) for each subject was determined by averaging the last several \(\dot{V}O_2\) measurements of each exercise load. This usually involved 3–6 measurements (the last 3–4 min of the exercise). Time \(t\) was taken as the midpoint of the period in which a given \(\dot{V}O_2\) measurement was determined. From equation (1) the \(\dot{V}O_2\) half time response, in seconds, is mathematically equal to 0.693/\(k\). For each subject, between six and ten measured \(\dot{V}O_2\) responses were used in the determination of \(k\).

The linear determination of the \(\dot{V}O_2\) half time response was calculated by the least-squares equation as follows:

\[
t = b(\dot{V}O_2,t/\dot{V}O_2,ss) + a
\]