Plasminogen activator inhibitor (type-1) in rat adrenal medulla

J. Eriksen*, P. Kristensen, C. Pyke, and K. Dano

Finsen Laboratory, Rigshospitalet, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark

Received January 4, 1989 / Accepted April 22, 1989

Summary. Plasminogen activator inhibitor type-1 (PAI-1) was identified in extracts of rat adrenal medulla, and its immunohistochemical localization was studied together with that of tissue-type plasminogen activator (t-PA). By staining of adjacent sections and by doublestaining of the same section we demonstrate that the same cells of the adrenal medulla contain both PAI-1 and t-PA immunoreactivity in the cytoplasm. In addition a few ganglion cells of the adrenal medulla were found to contain PAI-1 but not t-PA. Neither of the components were found in the adrenal cortex. Analysis of extracts from isolated adrenal medulla using reverse zymography showed the presence of a plasminogen activator inhibitor with $M_r \sim 46 000$. The inhibitory activity disappeared when the extract was passed through a column with sepharose-coupled anti-PAI-1 IgG, while the run-through from a similar column coupled with preimmune IgG still contained the inhibitor. The present findings suggest that PAI-1 could play a role in the regulation of t-PA activity in the rat adrenal gland medullary cells.

Introduction

Plasminogen activators are serine proteases which convert the proenzyme plasminogen to the active protease plasmin by limited proteolysis. Plasmin is a broad spectrum protease which is capable of degrading fibrin and a number of other proteins. At least two types of plasminogen activators control this proteolytic cascade: urokinase-type plasminogen activator (u-PA) and tissue-type plasminogen activator (t-PA). The molecular structure of these two proteins is well described (for review see refs. Astrup 1978; Reich 1978; Rohrlich and Rifkin 1979; Markus 1983; Daño et al. 1985; Blasi et al. 1987). The regulation of plasminogen activating activity is possible at different levels of the cascade reaction: biosynthesis, secretion, activation of proenzymes and by specific plasminogen activator inhibitors. Two types of plasminogen activator inhibitors, PAI-1 and PAI-2, have so far been identified. The two inhibitors are both glycoproteins with M_r of approx. 50 000 and are SERPINs (serin protease inhibitors). Their primary structure has been investigated by cDNA cloning and amino acid sequencing, and it has been found that PAI-1 is an Arg-SERPIN having an arginine residue at the reactive center (Loskutoff and Edgington 1981; Andreasen et al. 1986a–c, 1987; Coleman et al. 1986; Ginsburg et al. 1986; Loskutoff et al. 1986; Nielsen et al. 1986; Ny et al. 1986; Pannekoek et al. 1986; Ye et al. 1987).

In the intact organism PAI-1 has until now been found in plasma and thrombocytes (Stalder et al. 1985; Thorsen and Philips 1984; Kruithof et al. 1986). It has recently been shown that PAI-1 is present in Lewis lung carcinoma, and it has been proposed that PAI-1 plays a part in the control of the net plasminogen activation in this tumor (Kristensen et al. 1988).

t-PA is found in endothelial cells (Kristensen et al. 1984) and is thought to play a role in thrombolysis. In addition t-PA has been found in several different peptide hormone producing cells, namely somatostatin cells in the hypothalamus and islets of Langerhans (Virji et al. 1980; Kristensen et al. 1987), pituitary gland (growth hormone producing cells) (Ganellin-Piperno and Reich 1983; Kristensen et al. 1985), and adrenal medullary cells (noradrenaline containing cells) (Kristensen et al. 1986). In addition t-PA has been found in pachytyene spermatocytes of the rat seminiferous epithelium (Vihko et al. 1988).

Here we describe the immunohistochemical staining for PAI-1 in the rat adrenal medulla. We show that PAI-1 immunoreactivity is present in the endocrine cells that contain t-PA immunoreactivity and demonstrate the presence of PAI-1 inhibitory activity in extracts of adrenal medullary glands.

Materials and methods

Materials. The following materials were obtained from the indicated sources: nitro blue tetrazolium (grade III; NBT), 5-bromo-4-chloro-3-indoly1 phosphate (BCIP) and levamisole (Sigma, St. Louis, MO); N,N-dimethylformamide, 1,4-diazabicyclo(2,2,2)-octane (DABCO), methylgreen and eriochrome black (Merck, Darmstadt, West Germany); biotinylated swine anti-rabbit IgG; horse antimouse IgG; anti-PAI-1 IgG (Amersham, England). All other materials were obtained from the best commercially available grade.

Tissue material. Male Wistar rats weighing 250–350 g were anesthetized with diethyl ether. Animals to be used for immunohistochemistry were perfusion fixed intracardially – by 60 ml cold (4°C) 0.01 M sodium phosphate, pH 7.4 containing 0.15 M NaCl (PBS)
followed by 100 ml cold (4°C) 1% (wt/vol) paraformaldehyde in 50 mM phosphate buffer, pH 7.4.

Adrenals were fixed for 14–16 h at 4°C, followed by 4–6 h rinsing in 0.1 M sodium phosphate buffer, pH 7.4 containing 20% (wt/vol) sucrose. The glands were frozen in melting Frigen-22. Cryostat sections were cut at -18°C and collected on chrome-alum-gelatine coated slides (Kristensen et al. 1985).

Alternatively, for zymographic analysis, fresh PBS-perfused adrenal glands were removed and washed in PBS. The adrenal marrow was isolated from the cortex using a stereomicroscope. Adrenal marrow from 6 rats was gently dried on filter paper, weighed (30–35 mg) and homogenized in 0.1 M Tris, pH 8.1 containing 0.5% (wt/vol) Triton X-100, 5 mM EDTA, 30 μM p-nitrophenyl-p’-guanidino benzoate (NPGB) and 1 mM phenylmethylsulfonyl fluoride (PMSF) (10 μl per mg tissue). The extracts were centrifuged 10000 x g for 10 min at 4°C, and supernatants were collected into new tubes.

Antibodies. Human PAI-1 was purified by affinity chromatography using a monoclonal antibody (Nielsen et al. 1986), and used for immunization of rabbits, following a previously described scheme (Dane et al. 1980). The rabbit anti-human PAI-1 IgG was purified using affinity chromatography with protein-A Sepharose and the IgG was shown to react with rat PAI-1 and in addition to react weakly with mouse IgG (leaking from the affinity column) and fibronectin. The anti-PAI-1 IgG was therefore absorbed by passage of a 1 ml Sepharose column as described (Kristensen et al. 1985) coupled with 1 mg human fibronectin purified from human plasma as described by Vuento and Vaheri (1979) and 1 mg of mouse monoclonal anti-PAI-1 IgG clone 2 (Nielsen et al. 1986). The removal of antibodies reacting with mouse IgG and human fibronectin was monitored using ELISA (Kristensen et al. 1985) and after this absorption the anti-human PAI-1 antibodies were shown to react with rat PAI-1 using immunoblotting, ELISA, inhibitor neutralization in reverse zymography (not shown) by and purification of rat PAI-1 from conditioned culture fluid of HTC cells (see below). Anti-PAI-1 IgG was absorbed on purified PAI-1 by passing twice through a column with either Sepharose-coupled purified human PAI-1 (used in the present study) or purified rat PAI-1 (results not shown).

The anti-PAI-1 IgG was tested for reactivity with human t-PA using ELISA and for control staining experiments, a preparation of anti-PAI-1 IgG was passed through a column of Sepharose-coupled purified human t-PA. The ability of this column to remove anti-t-PA IgG from a preparation of anti-human t-PA IgG was confirmed in a separate experiment using ELISA and immunohistochemical staining of adrenal tissue.

Antibodies against human t-PA and capable of immunohistochromically detecting rat t-PA were described previously (Kristensen et al. 1984, 1985, 1986, 1987).

Rat PAI-1. HTC rat hepatoma cells were grown in monolayer cultures in Dulbecco-modified Eagle’s medium containing 10% fetal calf serum. Cell were washed twice with 20 ml PBS, pH 7.4 and maintained in medium without serum for 4 days before incubation with medium containing 10–6 M desmethylam (Andreasen et al. 1986a). Conditioned medium was harvested after 2 or 3 days of incubation and replaced with new medium containing desmethylase, 10 μg of rabbit anti-human PAI-1 was coupled to 3 ml CNBr-activated Sepharose 4B following the manufacturer’s recommendations. After packing, the column was equilibrated with 0.1 M Tris-HCl, pH 8.1, and approximately 500 ml of conditioned medium was loaded on the column overnight. After washing with 10 ml of 0.1 M Tris-HCl, pH 8.1, and 70 ml 0.1 M Tris-HCl, pH 8.1, with 1.0 M NaCl, the column was eluted with 0.1 M glycine-HCl, pH 2.5 with 0.5 M NaCl, into vials containing 1/10 of the eluted volume of 1.0 M Tris-HCl, pH 9.0. Purification was done at 4°C. SDS-PAGE analysis and Comassie-blue staining showed that the eluate contained one major band with a Mr of ~50000 and a weaker band around 45000. A very weak band with Mr ~100000 was occasionally seen. The two bands with Mr ~50000 are the typical pattern seen with purified rat PAI-1 (Zehnp et al. 1987).

Immunohistochemistry. Cryostat sections were thawed in 0.05 M Tris-HCl pH 7.4, containing 0.15 M NaCl (TBS) for 5 min, and fixed in 1% (wt/vol) paraformaldehyde in 50 mM phosphate buffer, pH 7.4 for 10 min. After washing 3 x 10 min in TBS with 1% (wt/vol) Triton X-100 (TBS-Triton) the sections were incubated in 30% (wt/vol) normal swine serum for 30 min and washed briefly in TBS-Triton. Incubation for 16–18 h at 4°C with primary rabbit antibodies (10 μg/ml) diluted in 10% (wt/vol) normal swine serum, was followed by 1 h at room temperature. Sections were washed 3 x 10 min in TBS-Triton and antibody bound was detected by incubation with swine anti rabbit IgG alkaline phosphatase conjugated, diluted 1:20 in 10% normal swine serum. Sections were then incubated 3 x 10 min in TBS-Triton and 10 min in 0.1 M Tris, pH 9.5 with 1 M NaCl and 5 M MgCl2. Alkaline phosphatase reactivity was demonstrated with the NBT-BCIP detection system (McGrady 1970; Kristensen et al. 1987). Sections were counterstained in nuclear fast red (0.05%). Staining controls included deletion of the various antibody layers and substitution of the primary antibody with a similar amount of preimmun IgG from the same rabbit or with IgG absorbed with purified preparations of the corresponding antigen (Larsson 1981; Kristensen et al. 1985, 1987).

Doublestaining. Sections were pretreated as described above and incubated with rabbit anti human t-PA overnight at 4°C and 1 h at room temperature. After washing for 3 x 10 min in TBS-Triton, sections were incubated for 30 min with biotinylated swine anti-rabbit IgG 1:200 in 10% normal swine serum, washed for 3 x 10 min in TBS-Triton, incubated for 30 min with FITC conjugated streptavidin and washed 3 x 10 min in TBS-Triton. Then the sections were dehydrated using graded ethanol and placed in a tightly sealed 0.41 jar containing 0.75 g paraformaldehyde powder (Wang and Larsson 1985). The closed jar was placed in an oven at 55°C for 1 h. The sections were rehydrated, washed for 4 x 10 min in TBS-Triton and incubated with second primary antibody (rabbit anti-PAI-1) (Wang and Larsson 1985). Reaction of the second antibody with the antigen was demonstrated with alkaline phosphatase methods described above. Sections were counterstained in methyl green (0.01%) and eriochrome black (1.65%) (Schenk and Churukian 1974) and mounted in glycerol-TBS 9:1 containing 30 mg/ml DABCO (Johnson et al. 1982). Control experiments included omission of second primary antibody and substitution of second primary antibody with preimmune or PAI-1 absorbed immune IgG (see discussion).

Biochemical analysis. Preimmune and anti-PAI-1 IgG was coupled to Sepharose following the manufacturer’s recommendations and columns were equilibrated with TBS. PBS (pH 7.4) was added to adrenal gland marrow extract supernatants to reach a total volume of 1.4 ml. To each column, 700 μl of the diluted extract was applied, and columns were washed with 6 ml of TBS. The first 3 ml of the run-through was collected, 60 μl 5% (wt/vol) SDS was added and the samples were dialysed against 2 x 2 L 0.1% SDS for ~16 h at 4°C and freeze-dried. The samples were reconstituted in 60 μl of sample buffer (Laemmli 1970) without SDS and SDS-PAGE was performed using 6%–10% acrylamide separating gels and a 4% stacking gel (Laemmli 1970). The SDS-polyacrylamide gels were washed in 0.5% Triton X-100 and layered on a fibrin-agarose gel containing plasmogen and urokinase as described (Andreasen et al. 1986a and b). Marker proteins were as described in Larsson et al. (1984).

Results

Immunohistochemical staining of the rat adrenal gland showed PAI-1 immunoreactivity in a subpopulation of adrenal medullary cells (Fig. 1a). These cells are seen as separate cell clusters. Staining of an adjacent section showed