ALGORITHM FOR THE VERTEX PACKING PROBLEM

Yu. V. Voitishin and E. A. Sharkovskaya

UDC 519.854.2

An algorithm to find the largest internally stable set of a graph is proposed. The algorithm is based on reduction to the problem of pairwise incomparable vertices with additional constraints.

Let $G = (V, E)$ be a finite undirected graph without loops and multiple edges; $V = \{v_i\}$ the vertex set of G, $E = \{e_j\}$ the set of edges of G (edges are also denoted by (v_i, v_j), $v_i, v_j \in V$). To each vertex $v_i \in V$ we associate some positive number $c(v_i)$, called the "weight" of the vertex v_i. The vertices v_i and v_j are called adjacent if $(v_i, v_j) \in E$; otherwise, v_i and v_j are nonadjacent vertices. The vertex packing problem involves finding a subset of nonadjacent vertices with a maximum sum of weights. This NP-complete problem is often called in the literature the maximum internally stable set problem.

The procedure P_1 transforms the graph G by the transitive orientation algorithm proposed in [1]. The procedure P_1 orients the edges $(v_i, v_j) \in E$. Denote $R(v_i) = \{v_j \in V: (v_i, v_j) \in E \vee (v_j, v_i) \in E \vee (v_i, v_l) \in E\}$, where $[v_i, v_j]$ is an arc oriented from v_i to v_j. Some vertices $v_l, l \in L$, are possibly split into two vertices each. In this case, we say that the vertex v_l and the vertex added to the graph G by the splitting of v_l are split vertices. The procedure P_1 uses rules 1 and 2 of the algorithm of [1] in a modified form.

Modified rule 1. If $[v_i, v_k] \in E$, $(v_k, v_j) \in E$, and $v_k \notin R(v_i)$, then orient the edge (v_k, v_j) as $[v_k, v_j]$ and do the procedure $P_2(v_k, v_j)$ described below.

Modified rule 2. If $(v_i, v_j) \in E$, $(v_i, v_k) \in E$, and $v_k \notin R(v_j)$, then orient the edge (v_i, v_k) as $[v_i, v_k]$ and do the procedure $P_2(v_i, v_k)$.

Procedure P_1

Step 1. Choose the edge (v_i, v_j) of the graph G and orient it arbitrarily, as $[v_i, v_j]$ say. Execute the procedure $P_2(v_i, v_j)$. Using modified rules 1 and 2, orient if possible the edges of the graph G adjacent to the arc $[v_i, v_j]$. Mark the arc $[v_i, v_j]$ as "inspected".

Step 2. Check if the graph G contains an arc that has not been marked "inspected". If yes, go to step 3; if no, go to step 4.

Step 3. Assume that the arc $[v_i, v_j]$ is not marked "inspected". For each edge (arc) incident on v_i or v_j do the following (whenever possible), then mark the arc $[v_i, v_j]$ as inspected, and go to step 2.

Case 1. Let (v_j, v_k) be the current edge.

A. If $v_k \notin R(v_i)$ and the edge (v_j, v_k) is not oriented, then orient the edge (v_j, v_k) as $[v_k, v_j]$ and do the procedure $P_2(v_k, v_j)$.

B. If $v_k \notin R(v_i)$ and the edge (v_j, v_k) is already oriented as $[v_j, v_k]$, then the graph G is not transitively orientable.

In this case, do the following. Check if v_j is a split vertex. If no, split the vertex v_j into two vertices v^0_j and v^1_j; for the vertex v^0_j duplicate all the edges and arcs incident on the vertex v_j, except the arc $[v_j, v_k]$; for the vertex v^1_j duplicate all the edges and arcs incident on the vertex v_j, except the arc $[v_i, v_j]$. If yes, delete the arcs $[v_i, v^1_j]$ and $[v^0_j, v_k]$ (if they have not been deleted previously).

C. If $v_k \notin R(v_i)$ and the edge (v_j, v_k) is already oriented as $[v_k, v_j]$, continue to inspect the next edge (arc).

Case 2. Let (v_i, v_k) be the current edge.

A. If \(v_k \notin R(v_j) \) and the edge \((v_i, v_k)\) is not oriented, then orient the edge \((v_i, v_k)\) as \([v_i, v_k]\) and apply the procedure

\[-\]

B. If \(v_k \notin R(v_j) \) and the edge \((v_i, v_k)\) is already oriented as \([v_k, v_i]\), then the graph \(G \) is not transitively orientable. In this case, do the following. Check if \(v_i \) is a split vertex. If no, split the vertex \(v_i \) into two vertices \(v_i^0 \) and \(v_i^1 \); for the vertex \(v_i^0 \) duplicate all the edges and arcs incident on the vertex \(v_i \), except the arc \([v_i, v_j]\); for the vertex \(v_i^1 \) duplicate all the edges and arcs incident on the vertex \(v_i \), except the arc \([v_k, v_i]\); go to step 2. If yes, delete the arcs \([v_k, v_i^1]\) and \([v_i^0, v_j]\) (if they have not been deleted previously); if this deletes the arc \([v_i, v_j]\) selected for inspection in step 3, then go to step 2.

C. If \(v_k \notin R(v_j) \) and the edge \((v_i, v_k)\) has already been oriented as \([v_i, v_j]\), then go to the next edge (arc).

Step 4. Check if all the edges of the graph \(G \) have been oriented. If yes, stop; if no, remove all the arcs from \(G \), producing the graph \(G' \); set \(G = G' \) and go to step 1.

Procedure P2

Step 1. Let

\[
\alpha = \begin{cases}
1 & \text{if } v_j \text{ is a split vertex}, \\
0 & \text{otherwise};
\end{cases} \\
\beta = \begin{cases}
1 & \text{if } v_j \text{ is a split vertex}, \\
0 & \text{otherwise}.
\end{cases}
\]

If \(\alpha = 0 \) and \(\beta = 0 \), then stop.

Step 2. Three cases are possible:

a) \(\alpha = 1 \) and \(\beta = 0 \); then orient the edge \((v_i^*, v_j^\#)\) as \([v_i^*, v_j]\), where \(v_i^* \) is the "other half" of the vertex \(v_i \);

b) \(\alpha = 0 \) and \(\beta = 1 \); in this case, orient the edge \((v_i, v_j^\#)\) as \([v_i, v_j^\#]\);

c) \(\alpha = 1 \) and \(\beta = 1 \); here orient the edge \((v_i, v_j^\#)\) as \([v_i, v_j^\#]\) and the edge \((v_i^*, v_j^\#)\) as \([v_i^*, v_j^\#]\).

End.

Let \(\tilde{G} = [\tilde{V}, \tilde{E}] \) be the resulting directed graph (digraph), \(\tilde{V} = \{v_i\} \) the set of supervertices. A supervertex \(v_i \) is either a simple vertex, if the corresponding vertex in the graph \(G \) is not split, or the pair of vertices \(v_i^0 \) and \(v_i^1 \).

Two vertices are called comparable if there is a path in the digraph passing through these vertices. Two supervertices \(v_i \) and \(v_j \in \tilde{V} \) are called comparable if at least one of the component vertices of \(v_i \) is comparable with at least one of the component vertices of \(v_j \).

From the description of the procedures P1 and P2 it follows that the supervertices \(v_i \) and \(v_j \) of the digraph \(\tilde{G} \) are comparable if and only if the corresponding vertices of the graph \(G \) are adjacent.

To each supervertex of the digraph we associate a weight equal to the weight of the corresponding vertex of the graph \(G \). Then the vertex packing problem for the graph \(G \) is equivalent to the problem of the maximum set of pairwise incomparable