The structural information content $I_g(X)$ of a graph X was treated in detail in three previous papers (Mowshowitz 1968a, 1968b, 1968c). Those investigations of I_g point up the desirability of defining and examining other entropy-like measures on graphs. To this end the chromatic information content $I_c(X)$ of a graph X is defined as the minimum entropy over all finite probability schemes constructed from chromatic decompositions having rank equal to the chromatic number of X. Graph-theoretic results concerning chromatic number are used to establish basic properties of I_c on arbitrary graphs. Moreover, the behavior of I_c on certain special classes of graphs is examined. The peculiar structural characteristics of a graph on which the respective behaviors of the entropy-like measures I_c and I_g depend are also discussed.

1. Introduction. In this paper we will discuss an entropy measure I_c defined with respect to a class of chromatic decompositions of a finite undirected graph. First, we will examine the behavior of this measure on arbitrary finite undirected graphs, and then specialize to particular cases. Second, we will compare I_c with I_g; finally, we will discuss the significance of the notion of graphical information content and summarize our results.

We begin with some definitions.* A homomorphism of a graph X into a graph Y is a mapping ϕ from $V(X)$ into $V(Y)$ such that whenever $[x, y] \in E(X)$, $[x, y] \phi = [x\phi, y\phi] \in E(Y)$. An equivalent way of defining this notion is to define an elementary homomorphism of a graph X as the identification of two non-adjacent points; then a homomorphism is just a sequence of elementary

* The definitions given here are largely those of Hedetniemi (1966).

† Present address: Department of Computer Sciences University of Toronto, Ontario, Canada.

BULLETIN OF
MATHEMATICAL BIOPHYSICS
VOLUME 30, 1968

ENTROPY AND THE COMPLEXITY OF GRAPHS: IV.
ENTROPY MEASURES AND GRAPHICAL STRUCTURE

Abbe Mowshowitz†
Mental Health Research Institute,
The University of Michigan,
Ann Arbor, Michigan

The structural information content $I_g(X)$ of a graph X was treated in detail in three previous papers (Mowshowitz 1968a, 1968b, 1968c). Those investigations of I_g point up the desirability of defining and examining other entropy-like measures on graphs. To this end the chromatic information content $I_c(X)$ of a graph X is defined as the minimum entropy over all finite probability schemes constructed from chromatic decompositions having rank equal to the chromatic number of X. Graph-theoretic results concerning chromatic number are used to establish basic properties of I_c on arbitrary graphs. Moreover, the behavior of I_c on certain special classes of graphs is examined. The peculiar structural characteristics of a graph on which the respective behaviors of the entropy-like measures I_c and I_g depend are also discussed.

1. Introduction. In this paper we will discuss an entropy measure I_c defined with respect to a class of chromatic decompositions of a finite undirected graph. First, we will examine the behavior of this measure on arbitrary finite undirected graphs, and then specialize to particular cases. Second, we will compare I_c with I_g; finally, we will discuss the significance of the notion of graphical information content and summarize our results.

We begin with some definitions.* A homomorphism of a graph X into a graph Y is a mapping ϕ from $V(X)$ into $V(Y)$ such that whenever $[x, y] \in E(X)$, $[x, y] \phi = [x\phi, y\phi] \in E(Y)$. An equivalent way of defining this notion is to define an elementary homomorphism of a graph X as the identification of two non-adjacent points; then a homomorphism is just a sequence of elementary

* The definitions given here are largely those of Hedetniemi (1966).

† Present address: Department of Computer Sciences University of Toronto, Ontario, Canada.
homomorphisms. \(\phi \) is called a full homomorphism of \(X \) into \(Y \) if \([x\phi, y\phi] \in E(Y)\) implies that there exist points \(u, v \in V(X) \) such that \(x\phi = u\phi \), \(y\phi = v\phi \) and \([u, v] \in E(X)\). The image of \(X \) under the homomorphism \(\phi \) is the graph \(X\phi \), with \(V(X\phi) = \{x\phi \mid x \in V(X)\} \) and \(E(X\phi) = \{[x\phi, y\phi] \mid [x, y] \in E(X)\} \). Clearly, \(X\phi \subseteq Y \) if \(\phi \) is a homomorphism of \(X \) into \(Y \); moreover, \(X\phi \) is a section subgraph of \(Y \) if \(\phi \) is a full homomorphism. If \(\phi \) maps \(V(X) \) onto \(V(Y) \), then \(\phi \) is called a homomorphism of \(X \) onto \(Y \). Note that if \(\phi \) is a full homomorphism of \(X \) onto \(Y \), then \(E(X)\phi = E(Y) \); if, in addition, \(\phi \) is one-one, then \(\phi \) is an isomorphism. A homomorphism \(\phi \) is said to be of order \(n \) if \(n = |V(X\phi)| \), and is complete of order \(n \) if \(X\phi \cong K_n \).

A coloring of a graph \(X \) is an assignment of colors to the points of \(X \) such that no two adjacent points have the same color. An \(n \)-coloring of \(X \) is a mapping \(f \) of \(V(X) \) onto the set \(\{1, 2, \ldots, n\} \) such that whenever \([x, y] \in E(X)\), \(xf \neq yf \), that is a coloring of \(X \) which uses \(n \) colors. An \(n \)-coloring \(f \) is complete if for every \(i, j \) with \(i \neq j \) there exist adjacent points such that \(xf = i \) and \(yf = j \). A decomposition \(\{V_i\}_{i=1}^n \) of the set \(V(X) \) of points of \(X \) is said to be a chromatic decomposition of \(X \), if \(x, y \in V_i \) imply that \([x, y] \notin E(X)\). Clearly, if \(f \) is an \(n \)-coloring of \(X \), the sets \(\{x \in V(X) \mid xf = i\} \) for \(i = 1, 2, \ldots, n \) form a chromatic decomposition of \(X \); conversely, a chromatic decomposition \(\{V_i\}_{i=1}^n \) determines an \(n \)-coloring \(f \). Thus, the sets \(V_i \) are called color classes. The chromatic number \(\kappa(X) \) is the smallest number \(n \) for which \(X \) has an \(n \)-coloring, or, equivalently, the smallest \(n \) for which \(X \) has a chromatic decomposition with \(n \) color classes. Note that a graph \(X \) can have more than one \(n \)-coloring (or chromatic decomposition with \(n \) color classes). \(X \) is called \(n \)-chromatic if \(\kappa(X) = n \).

The following remarks concerning the relationship between homomorphisms and \(n \)-colorings (illustrated in Fig. 1) are necessary for the sequel. It is easy to show (Hedetniemi, 1966, 10) that a graph \(X \) has a complete \(n \)-coloring \(f \) if and only if there exists a complete homomorphism \(\phi \) of \(X \) onto the complete graph \(K_n \). From this it follows that if \(\kappa(X) = n \), then \(X \) has a complete homomorphism of order \(n \); and that the smallest order of all homomorphisms of a graph \(X \) is just the chromatic number \(\kappa(X) \). Thus, it is clear that to each chromatic decomposition \(\{V_i\}_{i=1}^n \) of an \(n \)-chromatic graph \(X \), there corresponds a homomorphism \(\phi \) of \(X \) onto \(K_n \) such that each \(V_i \) is of the form

\[
\{x\phi = u \mid x \in V(X)\}
\]

for some \(u \in V(K_n) \).

2. The chromatic information content of a graph. Since the automorphism group of a graph \(X \) gives rise to a unique decomposition of \(V(X) \), we were able