Edge-Pancyclicity and Hamiltonian Connectivity of Twisted Cubes

Min XU
School of Mathematical Sciences, Beijing Normal University,
Laboratory of Mathematics and Complex Systems, Ministry of Education,
Beijing 100875, P. R. China
E-mail: xum@bnu.edu.cn

Abstract The twisted cube TQ_n is a variant of the hypercube Q_n. It has been shown by Chang, Wang and Hsu [Topological properties of twisted cube. Information Science, 113, 147–167 (1999)] that TQ_n contains a cycle of every length from 4 to 2^n. In this paper, we improve this result by showing that every edge of TQ_n lies on a cycle of every length from 4 to 2^n inclusive. We also show that the twisted cube are Hamiltonian connected.

Keywords cycles, twisted cubes, hypercubes, edge-pancyclicity, hamiltonian connectivity

MR(2000) Subject Classification 05C38, 90B10

1 Introduction

The hypercube network has been proved to be one of the most popular interconnection networks. The twisted cubes, proposed first by Hilbers et al. [1], form a class of hypercube variants, and are superior to the hypercube in having about half of the diameter of the hypercube. Various properties of twisted cubes have been investigated in the literature, see, for example, [1–5].

In interconnection networks, the problem of simulating one network by another is modelled as a graph embedding problem. There are several reasons why such an embedding is important [6]. For example, there are a number of efficient algorithms for solving some applications problems and the best communication patterns for their executions. For these algorithms, the existence of certain topological structures guarantees the desired performance. Thus, for such applications, it is desired to provide logically a specific topological structure throughout the execution of the algorithm in the network design.

Among all embedding problems, a cycle embedding problem is one of the most popular problems, that is, find a cycle of given length in graph. A graph G of order n is called k-pancyclic [7] if there exists a cycle of every length from k to n. The concept of pancyclicity was extended to vertex-pancyclicity by Hobbs [8] and edge-pancyclicity by Alspach and Hare [9], respectively. A graph G is called vertex-k-pancyclic (resp. edge-k-pancyclic) if for any vertex u (resp. edge e), there exists a cycle of every length from k to n containing u (resp. e). Clearly, every edge-k-pancyclic graph is vertex-k-pancyclic. Chang et al. [3] proved that TQ_n is 4-pancyclic since TQ_n contains no cycles of length three. Xu and Ma [10] proved that TQ_n
is vertex-4-pancyclic. In this paper, we improve these results by showing that TQ_n is edge-4-pancyclic for $n \geq 3$.

A path is called Hamiltonian if it contains all vertices of G. A graph G is said to be Hamiltonian connected if there exists a Hamiltonian path between any pair of vertices of G.

In this paper, we prove that the twisted cube is Hamiltonian connected.

The rest of this paper is organized as follows. In Section 2, we give the definition and basic properties of the n-dimensional twisted cube TQ_n. In Section 3 and Section 4, we discuss the edge-pancyclicity and Hamiltonian connectivity of TQ_n, respectively.

2 Twisted Cubes

We follow [11] for graph-theoretical terminology and notation not defined here.

The n-dimensional twisted cube, first proposed by Hilbers et al. [1], is denoted by TQ_n. Its vertex-set consists of all binary strings of length n, where n is odd. For a vertex $u = u_{n-1}u_{n-2}\cdots u_1u_0$ in TQ_n and for $0 \leq i \leq n-1$, we define the ith parity function $P_i(u) = u_i \oplus u_{i-1} \oplus \cdots \oplus u_0$, where \oplus is the exclusive-or operation. TQ_n can be recursively defined as follows: TQ_1 is a complete graph K_2 with two vertices 0 and 1. Suppose that n be an odd integer and $n \geq 3$. The vertices of TQ_n can be decomposed into four subsets, TQ_{n-2}^0, TQ_{n-2}^1, $TQ_{n-2}^{0,1}$, and $TQ_{n-2}^{1,1}$, where $TQ_{n-2}^{i,j}$ consists of those vertices u with $u_{n-1} = i$ and $u_{n-2} = j$. For each $(i, j) \in \{(0, 0), (0, 1), (1, 0), (1, 1)\}$, the induced subgraph of $TQ_{n-2}^{i,j}$ in TQ_n is isomorphic to TQ_{n-2}. Edges which connect these four subtwisted cubes can be described as follows: For a vertex $u = u_{n-1}u_{n-2}\cdots u_1u_0$, if $P_{n-3}(u) = 0$ then it is connected to another vertex $v = u_{n-1}u_{n-2}u_{n-3}\cdots u_3u_0$ or $v = u_{n-1}u_{n-2}u_{n-3}\cdots u_1u_0$; if $P_{n-3}(u) = 1$ then it is connected to $v = u_{n-1}\bar{u}_{n-2}u_{n-3}\cdots u_1u_0$ or $v = \bar{u}_{n-1}u_{n-2}u_{n-3}\cdots u_1u_0$. Figure 1 shows two different but equivalent layouts of TQ_3.

\[\text{Figure 1 Equivalent layouts of } TQ_3 \]

Let G be a graph and K_2 a complete graph of order two. Use $G \times K_2$ to denote such a graph obtained from two copies of G by adding all edges that join identical vertices in two copies.

The following lemma will be used in the proof of our result.

Lemma 1 (Huang et al. [5]) The subgraph induced by $TQ_{n-2}^{0,0}\cup TQ_{n-2}^{1,0}$ (resp. $TQ_{n-2}^{0,1}\cup TQ_{n-2}^{1,1}$) is isomorphic to $TQ_{n-2} \times K_2$.

For short, we use G_0 and G_1 to denote the subgraphs induced by $TQ_{n-2}^{0,0}\cup TQ_{n-2}^{1,0}$ and $TQ_{n-2}^{0,1}\cup TQ_{n-2}^{1,1}$, respectively. We call edges between G_0 and G_1 critical edges; and call edges