Norfloxacin
A Review of Its Antibacterial Activity, Pharmacokinetic Properties and Therapeutic Use

B. Holmes, R.N. Brogden and D.M. Richards
ADIS Drug Information Services, Auckland

Various sections of the manuscript reviewed by: R.R. Bailey, Department of Nephrology, Christchurch Hospital, Christchurch, New Zealand; A.L. Barry, Clinical Microbiology Institute, Tualatin, Oregon, USA; A. Bauernfeind, Institute of Hygiene and Medical Microbiology, University of Munich, Munich, West Germany; M. Bologna, Department of Biological Sciences, Collemaggio, Aquila, Italy; A. Digranes, Department of Microbiology and Immunology, Haukeland Hospital, Bergen, Norway; H. Giamarellou, Department of Propedeutic Medicine, Laikon General Hospital, Athens, Greece; H.C. Neu, Division of Infectious Diseases, College of Physicians and Surgeons of Columbia University, New York, USA; S.W.B. Newsom, Hospital Infection Society, Papworth Hospital, Cambridge, England; S.R. Norrby, Department of Infectious Diseases, University of Umeå, Umeå, Sweden; D.S. Reeves, Division of Pathology, Southmead Hospital, Bristol, England; J. Shimada, Department of Medicine, Jikei University School of Medicine, Tokyo, Japan; R. Wise, Department of Medical Microbiology, Dudley Road Hospital, Birmingham, England.

Contents

Summary ... 483
1. Antimicrobial Activity In Vitro .. 486
1.1 In Vitro Inhibitory Activity Against Aerobic Bacteria 486
1.1.1 Gram-Negative Bacteria .. 486
1.1.2 Gram-Positive Bacteria .. 489
1.2 Activity Against Anaerobic Bacteria and Other Organisms 489
1.3 Antifungal Activity .. 491
1.4 Activity Against Organisms Resistant to Other Antibacterial Drugs 491
1.5 Effect on Activity of Media, pH and Inoculum Size 492
1.6 Bactericidal Activity .. 494
1.7 Mechanism of Action and Development of Resistance 494
2. Pharmacokinetics .. 496
2.1 Absorption and Serum Concentrations ... 496
2.2 Distribution .. 497
2.3 Elimination ... 498
2.3.1 Half-Life .. 500
2.4 Effect of Decreased Renal Function on Pharmacokinetics 500
2.5 Effect of Decreased Liver Function on Pharmacokinetics 500
3. Therapeutic Trials ... 501
3.1 Uncomplicated Acute Urinary Tract Infection .. 501
3.1.1 Open Studies .. 501
Summary

Norfloxacin is one of the new 4-quinolone antibacterial agents. A fluorinated piperazinyl-substituted congener of nalidixic acid, it demonstrates a much wider in vitro antibacterial spectrum and greater potency than the parent compound. Its antibacterial activity against most Gram-negative pathogens is enhanced in comparison to nalidixic acid, but is similar to that of some of the other new 4-quinolones like enoxacin, and slightly less than that of ciprofloxacin. Unlike nalidixic acid, norfloxacin is also active against Pseudomonas aeruginosa and some Gram-positive organisms.

In acute or uncomplicated urinary tract infections, norfloxacin has repeatedly been shown to be as effective as co-trimoxazole. Single studies have demonstrated a significantly better bacteriological cure rate with norfloxacin than with pipemidic acid, and similar cure rates with norfloxacin and both a nalidixic acid/sodium citrate mixture and amoxycillin. Similar results were found in a few studies comparing norfloxacin to pipemidic acid or amoxycillin in patients with chronic and/or complicated urinary tract infections. Norfloxacin is as effective as spectinomycin in gonorrhoea due to penicillin-resistant N. gonorrhoeae, and cures bacterial gastroenteritis caused by several gastrointestinal pathogens.

Norfloxacin appears to be well tolerated and may have a low propensity to select for bacterial resistance during clinical use, although the latter needs further confirmation.

Antibacterial Activity: Norfloxacin is structurally related to nalidixic acid, but it has a broader in vitro antibacterial spectrum and is generally more active. Most Gram-negative pathogens including Escherichia coli and Klebsiella, Enterobacter, Proteus and Citrobacter species are susceptible to norfloxacin, and are inhibited by concentrations of 2 mg/L or less, with the exception of some strains of Acinetobacter, Providencia and Serratia species which are slightly less sensitive [minimum inhibitory concentration for 90% of tested strains (MIC90): < 1 to 32 mg/L]. 90% of Pseudomonas aeruginosa isolates are inhibited by norfloxacin 1 to 2 mg/L. Although several times more active than nalidixic acid and some other quinoline antibacterial agents such as cinoxacin and oxolinic acid against these pathogens, norfloxacin is usually of similar potency to enoxacin and generally less active than ciprofloxacin. Haemophilus influenzae demonstrates marked sensitivity to norfloxacin (MIC90 < 2 mg/L), as do Neisseria gonorrhoeae and meningitidis, and a range of organisms which commonly occur as gastrointestinal pathogens, e.g. Salmonella and Shigella species (MIC90 < 1 mg/L). Campylobacter species are inhibited by slightly higher concentrations (MIC90 ≈ 4 mg/L).

Staphylococci, including S. saprophyticus, are susceptible to norfloxacin (MIC90 1 to 4 mg/L) but the streptococci, including enterococci, are more resistant (MIC90: 2 to 16

1 'Barazan', 'Floxin', 'Zoroxin' (Merck Sharp and Dohme); 'Baccidal Kyorin' (Kyorin); 'Baccidal Torii' (Torii Yakuhin); 'Sebercim' (ISF); 'Fulgram' (ABC).