Norfloxacin
A Review of Its Antibacterial Activity, Pharmacokinetic
Properties and Therapeutic Use

B. Holmes, R.N. Brogden and D.M. Richards

ADIS Drug Information Services, Auckland

Various sections of the manuscript reviewed by: R.R. Bailey, Department of Nephrology, Christchurch Hospital, Christchurch, New Zealand; A.L. Barry, Clinical Microbiology Institute, Tualatin, Oregon, USA; A. Bauernfeind, Institute of Hygiene and Medical Microbiology, University of Munich, Munich, West Germany; M. Bologna, Department of Biological Sciences, Collemaggio, Aquila, Italy; A. Digranes, Department of Microbiology and Immunology, Haukeland Hospital, Bergen, Norway; H. Giamarellou, Department of Propedeutic Medicine, Laikon General Hospital, Athens, Greece; H.C. Neu, Division of Infectious Diseases, College of Physicians and Surgeons of Columbia University, New York, USA; S.W.B. Newsom, Hospital Infection Society, Papworth Hospital, Cambridge, England; S.R. Norrby, Department of Infectious Diseases, University of Umea, Umea, Sweden; D.S. Reeves, Division of Pathology, Southmead Hospital, Bristol, England; J. Shimada, Department of Medicine, Jikei University School of Medicine, Tokyo, Japan; R. Wise, Department of Medical Microbiology, Dudley Road Hospital, Birmingham, England.

Contents

Summary ... 483
1. Antimicrobial Activity In Vitro .. 486
 1.1 In Vitro Inhibitory Activity Against Aerobic Bacteria 486
 1.1.1 Gram-Negative Bacteria .. 486
 1.1.2 Gram-Positive Bacteria .. 489
 1.2 Activity Against Anaerobic Bacteria and Other Organisms 489
 1.3 Antifungal Activity .. 491
 1.4 Activity Against Organisms Resistant to Other Antibacterial Drugs 491
 1.5 Effect on Activity of Media, pH and Inoculum Size 492
 1.6 Bactericidal Activity .. 494
 1.7 Mechanism of Action and Development of Resistance 494
2. Pharmacokinetics ... 496
 2.1 Absorption and Serum Concentrations 496
 2.2 Distribution ... 497
 2.3 Elimination .. 498
 2.3.1 Half-Life .. 500
 2.4 Effect of Decreased Renal Function on Pharmacokinetics 500
 2.5 Effect of Decreased Liver Function on Pharmacokinetics 500
3. Therapeutic Trials ... 501
 3.1 Uncomplicated Acute Urinary Tract Infection 501
 3.1.1 Open Studies ... 501
3.1.2 Comparative Studies ... 501
3.2 Chronic and/or Complicated Urinary Tract Infections 504
 3.2.1 Open Studies .. 504
 3.2.2 Comparative Studies ... 505
3.3 Gonococcal and Non-Gonococcal Urethritis 505
3.4 Gastroenteritis and Prophylaxis of Sepsis in Neutropenic Patients 505
3.5 Other Infections ... 506
4. Side Effects .. 507
5. Dosage and Administration ... 508
6. The Place of Norfloxacin in Therapy ... 508

Summary:

Norfloxacin\(^1\) is one of the new 4-quinolone antibacterial agents. A fluorinated
piperazinyl-substituted congener of nalidixic acid, it demonstrates a much wider in vitro
antibacterial spectrum and greater potency than the parent compound. Its antibacterial
activity against most Gram-negative pathogens is enhanced in comparison to nalidixic
acid, but is similar to that of some of the other new 4-quinolones like enoxacin, and slightly
less than that of ciprofloxacin. Unlike nalidixic acid, norfloxacin is also active against
Pseudomonas aeruginosa and some Gram-positive organisms.

In acute or uncomplicated urinary tract infections, norfloxacin has repeatedly been
shown to be as effective as co-trimoxazole. Single studies have demonstrated a significantly
clearer cure rate with norfloxacin than with pipemidic acid, and similar
cure rates with norfloxacin and both a nalidixic acid/sodium citrate mixture and amoxycillin.
Similar results were found in a few studies comparing norfloxacin to pipemidic acid or amoxycillin in patients with chronic and/or complicated urinary tract infections.

Norfloxacin is as effective as spectinomycin in gonorrhoea due to penicillin-resistant
N. gonorrhoeae, and cures bacterial gastroenteritis caused by several gastrointestinal patho-
gen.

Norfloxacin appears to be well tolerated and may have a low propensity to select for
bacterial resistance during clinical use, although the latter needs further confirmation.

Antibacterial Activity: Norfloxacin is structurally related to nalidixic acid, but it has
a broader in vitro antibacterial spectrum and is generally more active. Most Gram-neg-
ative pathogens including Escherichia coli and Klebsiella, Enterobacter, Proteus and Cit-
trobacter species are susceptible to norfloxacin, and are inhibited by concentrations of 2
mg/L or less, with the exception of some strains of Acinetobacter, Providencia and Serrata
species which are slightly less sensitive [minimum inhibitory concentration for 90% of
tested strains (MIC\(_{90}\)): < 1 to 32 mg/L]. 90% of Pseudomonas aeruginosa isolates are
inhibited by norfloxacin 1 to 2 mg/L. Although several times more active than nalidixic
acid and some other quinolone antibacterial agents such as cinoxacin and oxolinic acid
against these pathogens, norfloxacin is usually of similar potency to enoxacin and gen-

1 'Barazan', 'Floxacain', 'Zoroxin' (Merck Sharp and Dohme); 'Baccidal Kyorin' (Kyorin); 'Bac-
cidal Torii' (Torii Yakuhin); 'Sebercim' (ISF); 'Fulgram' (ABC).