1. Introduction

Atypical antipsychotic drugs have different, multireceptor-binding profile, compared to typical antipsychotics. They have relatively higher serotonergic 5-HT2A receptor affinity compared to the dopaminergic D2 receptors. The atypical antipsychotic drug olanzapine is a drug in the thienobenzodiazepine class. It is a potent antagonist of 5-HT2A and D1, D2 and D4 receptors, with a higher affinity for 5-HT2A than for D2 receptors [1,2]. Fluphenazine is a conventional antipsychotic that blocks D1 and D2 receptors [3], and has moderate affinity for 5-HT2 receptors [4] that diminish psychotic symptoms. Ziprasidone is also an atypical antipsychotic drug that has a unique multireceptor-binding profile with a high ratio of 5-HT2A/D2, 5-HT2C/D2 and 5-HT1A/D2 receptor binding [5-7]. Although antipsychotic drugs are prescribed for the treatment of schizophrenia and psychotic disorders, some of these drugs have been reported to possess antidepressant properties. This antidepressant efficacy has been used in treatment, either as monotherapy or as an addition to treatment with various antidepressant drugs [8,9]. There is a trend of increased prescription of these drugs in the treatment of depression [10]. The antidepressant properties of antipsychotic drugs may be due to the pharmacological blockade of serotonin (5-hydroxytryptamine, 5-HT) transport, which terminates the synaptic action of 5-HT by its reuptake. The binding potency to the 5-HT transporter (5-HTT) or the equilibrium dissociation constants (Kd) for human 5-HTT of ziprasidone, olanzapine, fluphenazine, and sertraline have been shown to differ significantly [11]. Namely, ziprasidone has a high binding affinity (Kd=39 nM), while fluphenazine has a moderate binding affinity (Kd=400 nM), and olanzapine has a low affinity (Kd=1310 nM) for human 5-HTT [11]. These data suggest that some of these antipsychotic compounds might also bind, with varying binding potencies, to 5-HTT in vivo.

The antidepressant properties could be important additional advantages of antipsychotic drugs, since major depression is frequently associated with schizophrenia, and clinically significant depression was reported in more than 50% of patients with schizophrenia or schizoaffective disorders [12].

Platelet 5-HT concentration is assumed to represent a valid biomarker that can show the compliance of patients treated with selective serotonin reuptake inhibitors (SSRI), since all SSRI s block 5-HT transport and significantly decrease platelet 5-HT concentration [13-16]. A fall of platelet 5-HT concentration has been...
repeatedly found after treatment with SSRI [13-16]. The data on the effects of olanzapine or fluphenazine on 5-HTT in vivo when given to patients in therapeutic doses are still scarce. Recently it has been shown that ziprasidone does not affect 5-HTT in vivo when given to schizophrenic patients in lower (109 mg/day) doses [17] than those used for the treatment of schizophrenia. Namely, ziprasidone has been reported to be devoid of any effect on platelet 5-HT concentration in schizophrenic patients [17]. Since there is a lack of in vivo data on the effects of olanzapine and fluphenazine on 5-HT concentration in humans, and platelet 5-HT concentration is an easy obtainable biomarker that will be reduced if a drug blocks platelet 5-HTT, the aim of this study was to investigate the effect of the atypical antipsychotic olanzapine and the typical antipsychotic fluphenazine on platelet 5-HT concentration; and to compare these effects with the effect of ziprasidone, in patients with schizophrenia or schizoaffective disorders. We hypothesized that if these drugs affect human 5-HTT, schizophrenic patients treated with olanzapine or fluphenazine will have altered (i.e. decreased) platelet 5-HT concentration after 28 days of treatment, compared to baseline values.

2. Methods and materials

2.1 Subjects

Study group comprised of 60 patients, men and women, older than 18 years with the DSM-IV diagnosis of schizophrenia or schizoaffective disorders [18]. The diagnosis was attained using the Structured Clinical Interview based on DSM-IV criteria [19]. Patients were excluded if they had received ziprasidone, fluphenazine, olanzapine, SSRI, tricyclic antidepressants or other drugs that affect serotonin uptake, in the previous four weeks. They were also excluded if they had recorded past adverse reactions to ziprasidone, fluphenazine, or olanzapine. Moreover, the study excluded those who had dementia or any other organic mental disorder, and substance abuse and dependence in the previous three months, with the exception of nicotine and caffeine dependence. Patients with abnormal ECG, those with a corrected (QTC) interval exceeding 450 ms, or those receiving concomitant drugs known to prolong QTC interval, were also excluded. The only drugs allowed during the study, besides monotherapy with olanzapine, fluphenazine or ziprasidone, were benzodiazepines, hypnotics, and anticholinergic drugs to treat extrapyramidal symptoms. There was no lower or upper limit for the Positive and Negative Syndrome Scale (PANSS) total scores [20]. However, severely psychotic patients were not recruited because they were supposed to require intramuscular antipsychotics or the combination of antipsychotics. Severely depressed patients, which required the addition of antidepressants, were also excluded.

The study design: 25 patients were treated with olanzapine (12.8 ± 2.8 mg/day), and 14 patients were treated with fluphenazine (10.5 ± 2.5 mg/day). For comparison purposes, these results were compared with data from 21 schizophrenic patients who were treated with ziprasidone (109.0 ± 27.1 mg/day) [17].

Healthy female medication-free volunteers (N=65) had no known prior or current psychiatric diagnoses. The study protocols were carried out in Department for Psychiatry, University Hospital Center Zagreb. The study was approved by the hospital review board and the Ethics Committee of the University Hospital Center Zagreb, and has therefore been performed in accordance with the ethical standards established by the 1964 Declaration of Helsinki. All subjects provided signed informed consent.

2.2 Determination of platelet 5-HT concentration

Blood samples (8 ml) were collected into plastic syringes with 2 ml of acid citrate dextrose anticoagulant at 08.00 h. The determination of the platelet 5-HT concentration was done in platelet rich plasma using spectrofluorimetric method, as previously described [21,22]. Platelet protein concentrations were measured by the method according to Lowry [23]. Sampling was repeated on the 28th day of treatment or after the first sampling in the control group.

2.3 Statistical analysis

Statistical evaluation of the results, expressed as means ± SD, was done using one-way analysis of variance (ANOVA) followed by a Tukey’s multiple comparison test. The level of significance was set at p=0.05.

3. Results

Platelet 5-HT concentration did not differ significantly [F(3,246)=0.597; p=0.677] between medication-free healthy control subjects sampled at baseline (1.18 ± 0.26) and after 28 days (1.16 ± 0.27) and between schizophrenic patients sampled before (1.25 ± 0.46) or 28 days after (1.21 ± 0.53) different antipsychotic drugs.

To evaluate the effect of 28 days of treatment with olanzapine or fluphenazine on platelet 5-HT concentration, platelet 5-HT concentration was determined at baseline and after 28 days in schizophrenic patients treated with olanzapine or fluphenazine, and for the comparison in healthy control subjects sampled at the same time. These results were compared with the results obtained after ziprasidone treatment (Figure 1). Although there were significant [F(7, 242)=3.943; p<0.001] differences in platelet 5-HT concentration among these groups, these differences were not induced by the antipsychotic treatment (Figure 1). Tukey’s multiple comparison test revealed that treatment with olanzapine (p=0.117), fluphenazine (p=0.853) or ziprasidone (p=1.000) did not significantly alter platelet 5-HT concentration after 28 days of treatment compared to their baseline values, i.e. values before treatment. In addition, there was no significant difference between platelet 5-HT values in the healthy control group sampled at two time points (p=0.602). Platelet 5-HT concentration was significantly higher at baseline in patients treated with fluphenazine than in patients treated with ziprasidone (p=0.003). After 28 days of treatment, there were no significant (p>0.05) differences in platelet 5-HT concentration among all treatment groups (Figure 1). To confirm these results, one-way ANOVAs separately evaluated each group of patients treated with fluphenazine [F(1, 26)=0.724; p=0.403], olanzapine [F(1, 48)=0.044; p=0.835] or ziprasidone [F(1, 40)=0.157; p=0.694] at baseline and after 28 days of treatment. The results revealed no significant differences in platelet 5-HT concentration before and after treatment, and